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We present an asymptotic theory for the dynamics of detonation when the radius of 
curvature of the detonation shock is large compared to the one-dimensional, steady, 
Chapman-Jouguet (CJ) detonation reaction-zone thickness. The analysis considers 
additional time-dependence in the slowly varying reaction zone to that considered in 
previous works. The detonation is assumed to have a sonic point in the reaction- 
zone structure behind the shock, and is referred to as an eigenvalue detonation. A 
new, iterative method is used to calculate the eigenvalue relation, which ultimately 
is expressed as an intrinsic, partial differential equation (PDE) for the motion of the 
shock surface. Two cases are considered for an ideal equation of state. The first 
corresponds to a model of a condensed-phase explosive, with modest reaction rate 
sensitivity, and the intrinsic shock surface PDE is a relation between the normal 
detonation shock velocity, D,, the first normal time derivative of the normal shock 
velocity, D,,, and the shock curvature, IC. The second case corresponds to a gaseous 
explosive mixture, with the large reaction rate sensitivity of Arrhenius kinetics, and 
the intrinsic shock surface PDE is a relation between the normal detonation shock 
velocity, D,, its first and second normal time derivatives of the normal shock velocity, 
b,, B,, and the shock curvature, IC, and its first normal time derivative of the curvature, 
k. For the second case, one obtains a one-dimensional theory of pulsations of plane 
CJ detonation and a theory that predicts the evolution of self-sustained cellular 
detonation. Versions of the theory include the limits of near-CJ detonation, and when 
the normal detonation velocity is significantly below its CJ value. The curvature 
of the detonation can also be of either sign, corresponding to both diverging and 
converging geometries. 

1. Introduction 
Previous work, Stewart & Bdzil (1988), Bdzil & Stewart (1989), has developed an 

asymptotic theory for weakly curved, slowly varying detonation that propagates near 
the Chapman-Jouguet (CJ) velocity, DcJ, for the explosive, and has found that the 
normal detonation shock velocity D, is a function of the total shock curvature, IC. 

We call this relation, the (D,,K)-relation, and it is a partial differential equation 
(PDE) for the motion of the detonation shock surface. The functional form of the 
(D,, Ic)-relation follows from an asymptotic argument and is solely determined by the 
explosive material's equation of state and reaction rate law. 

In this paper, we extend the asymptotic analysis by considering the additional time- 
dependence which is required when the normal detonation shock velocity deviates 

t Author to whom correspondence should be addressed. 



226 J .  Yao and D. S .  Stewart 

significantly from its CJ value, or when the additional dynamics of low-frequency, 
acoustics are considered for explosives with a sensitive reaction rate. The new 
descriptions can include both accelerating and decelerating detonations, and the 
curvature of the detonation can be positive or negative for diverging (convex) or 
converging (concave) geometries. The only restriction is that the detonation structure 
has an essentially sonic character. This analysis is a significant extension and replaces 
the older theory, referred to above, where the detonation normal shock speed is, 
by assumption, always restricted to be near-CJ. In particular, this new theory re- 
introduces the time derivatives which are absent in the older theory. However, 
an assumption of slow variation in time, measured on the scale of the particle 
transit time through the reaction zone, is still required to carry out a rational set of 
approximations, where the one-dimensional steady structure holds to leading order. 

The asymptotic technique for analysing the quasi-steady equations in intrinsic coor- 
dinates, used in Stewart & Bdzil (1988) and elaborated on in Klein & Stewart (1993), 
involves an expansion technique in the (U:, ,?.)-plane, where U ,  is the normal velocity 
in a shock-attached frame and ,?. is a progress variable for a forward exothermic 
reaction. In the simplest version of the theory, there are essentially two layers, a 
main reaction layer (MRL), which is a layer that connects the desired (U,, A) integral 
curve to the shock boundary conditions at A = 0, and a transonic layer (TSL), that 
connects to the singular point at the intersection of the sonic and thermicity locus, 
near the end of the reaction layer, with A near 1. Matching the expansions from either 
side gives the D,, K eigenvalue relation, albeit in a somewhat tedious fashion. (When 
the dimensionless activation energy is large, then the MRL has a induction-zone 
(IZ) layer near the shock, and it is appropriate to consider a distinguished limit that 
reflects how the shape changes of the shock can affect the post-shock temperature. 
This analysis was recently considered for the steady case, Yao & Stewart (1995).) 

The quasi-steady eigenvalue problem, posed in 94, can be solved numerically, for 
finite IC, by an iterative shooting technique that starts from the shock and integrates 
towards the sonic point or vice versa. Numerically, this procedure is found to be 
quite robust. For asymptotically small curvature, the numerical shooting technique 
is equivalent to a method of successive approximation (MSA) technique, which is an 
alternative to the layer expansion technique. The MSA technique formally integrates 
a nearly conservative form of the equations in the normal coordinate, from the shock 
to the generalized CJ-point to obtain integral equations. Integral equations are then 
used to generate non-singular asymptotic expansions, where the first approximation 
is a one-dimensional steady, or quasi-steady state. The procedure is general and 
might be useful for substantial extensions of the related theory : specifically, complex 
chemistry. It would seem that in most cases that we have tried so far, only one 
or two iterations are really all that are required to obtain the essential asymptotic 
results. Like the numerical approach, the technique is likely to be robust. In what 
follows, we present the derivation of an unsteady detonation structure that includes 
acceleration effects using the MSA technique; however we have also carried out the 
same calculations in 95, using the layer expansion procedure, and those details can 
be found in Yao (1996). 

In $2 we cite the governing equations, explain the intrinsic, shock-attached coordi- 
nates used, and present the reduced equations that are analysed subsequently. Section 
2 is read with the help of Appendices A and B, which give details on Betrand-intrinsic 
coordinates and the reduced governing equations, respectively. Section 3 briefly re- 
views the one-dimensional steady and quasi-steady states. Section 4 derives the result 
for quasi-steady, near-CJ detonation and in particular uses the MSA technique in an 
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integral formulation and succinctly derives all the results of the older theory. Section 5 
derives the asymptotic results for slowly varying, unsteady, weakly curved detonation 
and a (b,, D,, #)-relation that governs the shock dynamics, which is appropriate for a 
model of condensed explosive with low or zero activation energy. The strong-shock 
approximation is employed. Here bn is the first normal time derivative of D,. Section 
6 separately considers the special case of large activation energy and derives a richer 
surface evolution equation, which is a relation between &, b,, D,, K and k.  Further 
analysis of this equation in the limit of zero curvature leads to a description of pulsat- 
ing detonation for the plane, CJ detonation, governed by a second-order ODE, with 
a correspondingly simple stability theory. The same equation with curvature admits 
solutions that correspond to detonations that have self-sustained cellular instability, 
generated by transverse waves on the shock. 

2. Governing equations 
A standard model of explosive materials is adopted: a compressible Euler fluid, with 

exothermic reaction. The basic mechanical variables are the velocity, u, the density 
p and the thermodynamic pressure p .  The specific volume is o = l / p .  Chemistry is 
modelled in the equation of state by introducing an exothermic chemical reaction, 
represented by the progress variable, A. Specification of an equation of state (EOS) of 
the form e(p, p, A), and a rate law, r ( p ,  p, A) for A, is assumed to describe the explosive. 

We will further assume the explosive has a polytropic equation of state and an 
Arrhenius form for the reaction rate, 

(2.la, b)  

where y is the polytropic exponent and Q is the heat of combustion, and k ,  v, and E 
are respectively the pre-multiplying reaction rate constant, the depletion factor and 
the activation energy. The square of the sound speed is c2 = yp/p. This equation of 
state is the appropriate one for a description of a gaseous explosive. The polytropic 
equation of state is often used to describe the expansion of explosive products by 
allowing y to have artificially higher values than that usually allowed for gases, i.e. 
y - 2.5-3, with initial densities that are approximately one thousand times larger 
than those for typical gases. This EOS also has the advantage that a relatively large 
body of theoretical results exists for it, and which include asymptotic, linear stability, 
Lee & Stewart (1990), and some resolved one-dimensional numerical studies. 

The Euler equations are given by 

Dp Du De Dv Dil 
Dt + PV * u = 0, p- + v p  = 0, - + p -  = 0, - Dt = r ( p ,  p, A))  (2.2) Dt Dt Dt 

where D / D t  = d / d t  + u * V. We will assume that the upstream state is quiescent 
with u = 0, density po and ambient pressure po. The strong-shock approximation 
can be used when the ratio of the shock pressure to the ambient pressure is very 
large, i.e. p s / p o  * 1. The strong-shock approximation simplifies the presentation of the 
shock relations and is used 992, 3, 4 and 5. The general shock relations are restored 
in $6. For the strong-shock approximation, the CJ detonation velocity is given by 

We now adopt the notation convention where a tilde superscript denotes a dimen- 
sional quantity and the quantities without a tilde are dimensionless, scaled with respect 

D& = 2(y2 - 1)Q. 
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to the dimensional unit unless otherwise specified. In particular, the length, velocity 
and time scales are given by Zrz,bcJ and t? , , /b~~ respectively. The length I,,,  is taken 
to be a characteristic one-dimensional, steady reaction-zone length. In $5, we identify 
I,, as the steady plane CJ half-reaction-zone length: the distance from the shock to the 
point of half-reaction for a steady plane-CJ detonation. In $6 we specifically identify 
e",, as an induction-zone length, which is commensurate with the half-reaction length. 
From (2.lb) we identify the dimensionless rate constant, k = k"?,,/bc~. The density 
scale is fi  and pressure scale is p&,. Consequently the sound - -  speed, reaction rate, 
curvature and heat of combustion appear as c = C " / ~ C J ,  r = W r Z / D ~ j ,  IC = KZr,. The 
scaled activation energy is defined by 8 = yE/b$,. In the strong-shock approximation 
the heat of combustion appears as q = Q/b:J = 1/[2(y2 - l)]. 

Later in the paper we refer to parameters that use Erpenbeck's scales, Erpenbeck 
(1964). In his stability studies, Erpenbeck used the density scale, p"0, the pressure scale, 
PO, and as the velocity scale the quiescent sound speed, Eo. He chose the characteristic 
length to be the half-reaction length. Erpenbeck's scaled activation energy and the 
scaled heat release are defined by E = E / ( p o / p o )  and Q = ( 2 / ( p o / p 0 ) ,  respectively. 

The (dimensionless) normal strong shock relations for an ideal gas moving into an 
ambient atmosphere reduce to 

Y + l  
7-1 '  Ps = - 

where the n and 
velocity and the 

Df, U, = U, - D, = -- - D,, ut = 0, 2, = 0, P s  = - (2.3) 
2 

Y + l  YS-1 

t subscripts respectively refer to the normal component of the shock 
tangential component(s) as defined by the shock normal. 

2.1. Intrinsic geometry and shock-attached coordinates 
In order to make the analysis tractable, the equations of motion must be written in 
a suitable form. In what follows, we use intrinsic, shock-attached coordinates. The 
coordinates are specifically based on Betrand curves whose coordinates are instan- 
taneously normal and parallel to the shock surface. Details of the transformation 
between Cartesian and the Betrand-intrinsic coordinates are described in Appendix A. 
For brevity, we restrict the presentation that follows to two dimensions. In the exten- 
sion to three dimensions, the curvature that appears in the theory is the sum of the 
principle curvatures. The shock surface can be represented quite generally in terms 
of laboratory-fixed coordinates (x, y )  by a function y(x,  y ,  t )  = 0. This equation con- 
strains the lab-coordinate position vectors in the surface to x = x, (x ,  y ,  t ) .  The shock 
surface can also be represented by a surface parameterization x = x,( l , t ) ,  where l 
measures length along the coordinate line of the surface. The outward normal (in 
the direction of the unreacted explosive) and unit tangent vector in the shock surface 
(which form a local basis) are given by A = Vy/lVyl, ? = 13x,/a<. The total shock 
curvature is given by 

IC(<, t )  = v * A. (2.4) 

Finally, the intrinsic coordinates are related to the laboratory coordinates by the 
change of variable given by 

where the variables n, 5 are respectively the distance measured in the direction of the 
normal to the shock wave, and the arclength measured in the shock surface along the 
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principle line(s) of curvature. A more complete description of the Bertrand-intrinsic 
coordinates is found in Appendix A. 

2.2. Reduced equations in the shock-attached frame 
The governing equations are transformed from a representation in (x, y, t)-coordinates 
to (n,  [, t)-coordinates according to coordinate transformation (2.5). The calculations 
required are straightforward but lengthy. In particular, we note that the normal shock 
velocity and curvature are only functions of 5 and t, i.e. D, = D , ( t ,  t) and K = K ( ( ,  t). 

Let U, = U, - D,, be the relative normal velocity in the shock-attached frame. 
Appendix B shows that under the assumption that the scaled curvature K + 0, and 
that the structure of the flow immediately behind the shock ( n  < 0, n - O( 1)) has weak 
transverse variations, the transverse velocity uc can effectively be taken to be zero, 
and the following reduced equations are accurate to O(K) .  We take these equations 
to be the starting point for the analysis that follows: 

aU, . au, 1 ap 
- + D ,  + u,- + -- = 0, 
at a n  p a n  

an an 
d t  a n  
- + U,- = r .  

(2.7) 

(2.9) 

Next we present the same equations in a nearly conservative form by placing 
all the terms where the curvature explicitly appears, and the time-dependent terms 
on the right-hand side. The right-hand side is associated with small corrections to 
the essentially, one-dimensional, steady flow. We use the notation ()$ = a/atl,c. 
We further assume that the time-dependence of the flow is slowly varying so that 
a/& - o(1) as K -+ 0. As mentioned in Appendix B, for the purpose of further 
calculation, to O(u) we can replace b, by its approximation, and write 

(2.10) 

(2.11) 

The rate equation can be written as 

(2.13) 
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The master equation 

(2.14) 

is an alternative form of the energy equation, which is used as an auxiliary equation, 
but is not independent. 

2.3. The generalized CJ conditions 
Wood & Kirkwood (1954) first pointed out the essential character of the nonlinear 
eigenvalue problem that defines the relation between curvature and the normal 
detonation speed. In particular, they argued that the ordinary differential equations 
of the quasi-steady, diverging, near-CJ detonation had to obey both the shock relations 
and the ‘generalized CJ conditions’, at a sonic point near the end of the reaction zone. 
This arises simply from the basic properties of the Euler equations, and the master 
equation exhibits the special character of the sonic point. Suppose the flow has a 
sonic point where 

q . = c 2 - - 2 =  n 0, (2.15) 

then equation (2.14) is satisfied at that point in general only if the right-hand side 
vanishes simultaneously, i.e. 

(2.16) qr(y - 1) - 1cc2(Ufl + D,) + U,(U,, + D,J - 2 = 0. 

The pair of conditions (2.15) and (2.16) taken together are called the ‘generalized 
CJ-conditions’. 

P t  

P 

3. One-dimensional steady and quasi-steady states 
When the time derivatives and curvature are absent the conservation laws given 

in the preceding section can be integrated to obtain the Rankine-Hugoniot (RH) 
relations (simplified with the use of the strong-shock approximation), 

pull = -Dn, (3.1) 

The solution of this algebraic system for U,,v = l / p  and p in terms of L and D, is 

where 

L = (1 - A/Dn2)”*. 

Also the sound speed squared and the sonic parameter are given by 

(3.4) 

(y-te)(l+G), q . E C  - u  =- Dn2 G(y - 8 ) .  (3.5) c 2 = On2- 
( Y  + (Y + 1) 
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The distribution of the reaction is given by the integral 

n = LA F d x ,  

which can be inverted to obtain J.(n,t), where time appears parametrically. Note 
that sonic parameter q is proportional to L, hence the flow is sonic where G = 0, or 
whenever 0,” = 1. 

If the flow is steady and the detonation is overdriven with D, > 1, then G > 0 
for all 0 < 1 < 1. If D, = 1, the CJ case, then G = 0 when 1 = 1. If the wave 
is underdriven, D, < 1, and the sonic point exists for J. = D: < 1 with incomplete 
combustion at the sonic point. An underdriven one-dimensional detonation cannot 
be a steady wave throughout all space; however it may still be quasi-steady in some 
regions. The steady relations formally derived for D, < 1 can be used if some portion 
of the wave is quasi-steady; for example, between the shock and the sonic point. 
As we will see this possibility leads to the descriptions of unsteady detonations that 
travel at sub-CJ velocities that have a simple description in the region between the 
shock and sonic point. Overdriven detonations may also have a sonic character, so 
long as D, is close to one. 

4. Quasi-steady, near-CJ curved detonation 
Here we briefly review the essential aspects of the previous theoretical results 

for quasi-steady, near-CJ curved detonation. The emphasis is on illustrating the 
eigenvalue relation between the normal detonation velocity D, and the curvature K .  

These appear in Stewart & Bdzil (1988), Klein & Stewart (1993), and most recently 
in Yao & Stewart (1995), for large-activation-energy. Layer asymptotics are used to 
derive the results, with asymptotic descriptions near the shock, in the main reaction 
layer and near the sonic point, and the (D,,K)-relation is found as a consequence of 
matching the expansions. However in our review we present a new technique that 
obtains the previous formulas, based on approximation to integral equations rather 
than differential equations. 

The mathematical character of the structure problem is described simply in the 
(U:, I)-plane. For the reduced equations, (2.10)-(2.12), set d / d t  = 0, and divide the 
master equation (2.14) by rate equation (2.13) to obtain 

subject to the shock boundary condition 

The reduced Bernoulli equation (2.12) is integrated to obtain the following expression 
for c2: 

-1  1 
c2 = L ( D i  - U,”) + - 

2 2(Y + 1)’ 
(4-3) 

The integral curves in the (V,”, I)-plane are governed by the locus @, q and r equal to 
zero. When the shock is convex, with K > 0, there is a saddle point at the intersection 
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of q = c2 - U,” = 0 and @ = (y - 1)qr -  KC^( U,  + D,) = 0. Integral curves leaving the 
shock point U, = -(y - l) /(y + l)Dn at R = 0, for fixed D, (say), without a precise 
value of K ,  do not pass through the saddle point and have unphysical structure. Hence 
there is a unique (eigenvalue) relation between D, and K to accommodate passage 
through the saddle singular point. 

Calculation of the (D,,rc)-relation can be carried out in a very simple way as 
follows. First we find an integrating factor for (4.1) that corresponds to the plane 
case for K = 0. This corresponds to multiplying the above equation (4.1) by the factor 
-2(y + 1)(c2 - U,”)/U,’ and recombining the result to obtain an equation equivalent 
to (4.1), 

Note that if the above equation with K = 0 is integrated, with the integration constant 
evaluated at the shock, one obtains precisely the result that can be obtained from 
the Rankine-Hugniot relations (3.1)-(3.3), which is quadratic in U, and expresses 
conservation of energy throughout the wave structure. 

Now integrate (4.4) from the shock to the singular point at R = LCJ to obtain the 
result at the CJ point 

We obtain a correction to the plane value of U, (i.e. K = 0 value), by an 
iterative procedure that uses the one-dimensional, quasi-steady CJ solution (with 
Un = -(y - t ) / ( y  + l), c2 = y ( y  - l)(l + t ) / ( y  + 1)’ and t = (1 - L ) l l 2 ) ,  as a first 
approximation in the integral in (4.5), which results in the new approximation 

where 

Enforcing the sonic condition with c2 = U i  in Bernoulli’s equation (4.3) gives the 
condition 

Using this result in (4.6) to eliminate ( U ~ ) C J ,  and dropping O(lc2)-terms gives the 
formula 

0,’ = RCJ - 2 ~ y ~ D n I .  (4.9) 

The (D,,K)-relation is found once RCJ is estimated. This estimate comes from the 
application of the thermicity condition, q(r)CJ(y - 1) = K(c2)CJ[(un)CJ + On], which 
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shows that for D, close to one and K small 

A,, = 1 - (Z*K)1'" + . .. . (4.10) 

Using this result in formula (4.9) gives 

D, = 1 - t iy21 - ;(z*rc)'/", (4.11) 

where z* = 2y2/[(y + 1 ) 2 k ~ ~ ] ,  and where kcJ = kee/c2(o), is the leading-order value 
of the state-dependent reaction rate pre-multiplier, evaluated at the one-dimensional, 
CJ-state. 

The formula (4.11) agrees precisely with the results found in Stewart & Bdzil (1988) 
and Klein & Stewart (1993), derived for 0 G v < 1. Appendix C has details about the 
limiting form of the formulas for v < 1, and includes the logarithmic dependence on 
IC for v + 1. Importantly, all the results found in the previous papers are contained 
in our formula derived here. Note that only one iteration of the proper integral 
formulation of the problem posed in the (U,,il)-plane is needed. This procedure 
stands in contrast to the more complex expansion techniques of the previous works. 

5. Slowly varying, unsteady, weakly curved, detonation 
Here we add the effect of the normal acceleration of the detonation shock, and 

calculate its influence on the dynamics of the detonation shock. In particular, we 
derive an evolution equation for the motion of the shock surface in terms of the 
intrinsic time-derivative of the normal shock velocity, bfi, the shock normal velocity 
D, and the curvature K :  a (D,, D,, rc)-relation. While we are still considering slow- 
time variation, on the scale of the particle transit time through the reaction zone 
of the detonation, we distinguish the results derived here as containing more time- 
dependence than that considered previously. Hence the description is distinguished 
as slowly-varying, unsteady in contrast to the older theory for which the new time- 
dependent effects are absent. When it is appropriate to neglect the shock normal 
acceleration term and set b, = 0, the previously derived D,, K relation is recovered. 

We start by integrating equations (2.10)-(2.12) from n = 0 to the CJ point, ncJ,  
and apply the strong-shock boundary conditions to obtain integral equations. The 
first approximation to the solution is the one-dimensional, quasi-steady CJ solution, 
and it is used to approximate the integral residual terms on the right-hand side of the 
integral equations, which in turn yield higher-order approximations. For the purpose 
of generating the corrections, we assume that the detonation velocity and the state 
have the explicit form 

and 

D, = D + tiD' (5.1) 

where e = (1 - i l /D2)1/2.  To keep notation to a minimum, a * subscript refers 
to the leading-order approximation and a prime is associated with the correction 
to that approximation, e.g. U ,  = U,(e, D )  + KU'. We represent the leading-order 
approximation to D,, (D,)*, by a plain D. All that is assumed for now in the 
various expansions (illustrated by the expansion for U,) is that the correction term 
tiU' N o(U) as K + 0. The resulting approximations to the integral equations listed 
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below have been further simplified by using the first approximation in the integrals 
on the right-hand side of (2.10 )-(2.12). Finally we also use the rate equation (2.13) 
to change the independent variable of integration from n to the progress variable I 
to obtain equations for the approximations of p, U,,p and D,, 

p u n  + Dn(t) = Ln[-.p*(U* + D) - p*,t]d% (5.3) 

pU,Z + p - D:(t)  = - ‘ .[(p. - l )D, [  - KD( U. + D)]dR, 
0 

(5.4) 

q l -  iD ,” ( t )  = 1” [-9 - ( 1  + $-) D,[] dR. (5.5) 
1u2+-- C2 

Y - 1  2 ,  

One calculates the approximate state at the CJ point, ~ C J ,  where A = ACJ, to obtain 
an approximation to the fluid state there. In particular, it is necessary to calculate the 
integrals 

This is done most conveniently using Liebnitz’s rule, which we illustrate with the 
integral over p.,[. Rewrite the integral as 

In turn, a(ncJ) /a t  is estimated from differentiating with respect to time the integral 
of the distribution of n, i.e. 

If we use the rate equation (2.13) to convert the first integral on the right-hand side 
of (5.6),  we combine the result to get 

Finally, if we use the expressions for p. and U, (which contain implicit time 
dependence through D ) ,  and neglect &, then one finally obtains 

a LCJ / 
p.3tdii = - (D 1 ;dA) D,t. 

aD (5 -9)  

By evaluating (5.3)-(5.5) at the CJ-state we obtain a set of Rankine-Hugoniot-like 
conditions that determine approximations to the CJ state, 

( p U n ) C J  = -DQ + KIlD2 f JID,t, (5.10) 
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where the reaction rate integrals Il,Z2,Jl, 52 are given by 
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The formal algebraic solution of equations (5.10)-(5.12) subject to the sonic con- 
straint that c2 = U,' in fact determines the state pcJ, (U,,)CJ,pcJ and a condition on 
the speed D,, in the same way as is obtained for the simplest case of a steady plane 
CJ wave. For our present purpose the algebra for the states is solved simply in a few 
steps. Step one uses the mass equation (5.10) to replace p by U,,. Step two divides 
equation (5.11) by p, uses the replacement of p in terms of U,, from the previous step, 
and replaces p / p  by c2/y .  Now the sonic condition c2 = U,' can be used to obtain 
an equation for U,, alone, which is quadratic, but has the common factor U,,. The 
relevant root is the other factor which obtains the solution for U,:  

(5.14) 
u y [DZ - K Z ~ D ~  + ZiDD,t] 

An important consequence of the factorization (from the application of the sonic 
condition) is that the CJ state is linear in the perturbation to the leading-order state. 
The result for U,, and the sonic condition c2 = U,' can then be used in the remaining 
equation (5.12) to obtain a condition on D,, which in fact is a condition on D,, IC 

and ACJ, 

y + 1 [Dn - ~ I D ~  - J1D,t] ' 
n -  

+ 2(y2 - 1)(I1 + JI)DD,t = 0. (5.15) 
[D,' - d 2 D 3  + Z1DD,tI2 

D:-kJ+y2{ [D, - 1 ~ 1 1  D2 - J1 D,J2 

One can write the formal expressions for pcJ and pcJ by back substitution. 
The algebratic solutions to this point are formal and are further reduced by only 

retaining the first corrections in the curvature, K ,  and the unsteadiness represented by 
D,. Thus we obtain the reduced expression for the states at the CJ point 

Y 
(U,)CJ = --D - [KD' + x(Zi - 12)D2 + (11 + Jl)D,t] , 

y + l  y + l  

PCJ = - + - [K(~D '  - Z2D2) + IlD,t] , 
D2 D 

y + l  y + l  

+ 2- [@' + (ZI - 12)D2) + (ZI + Jl)D,t] , (c )CJ = ____ 
Dy2 2 y2D2 

(Y + (Y + 
and a reduced (D,t, D,, IC, &)-relation, 

DE - ACJ + 2 ~ y ~ ( Z 1  - Z2)D3 + 2DD,t[(y2 - 1)(11 + J2) + ~ ~ ( 1 1  + Ji)] = 0. 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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In most respects, equation (5.20) is the key result and holds generally for slowly 
varying weakly curved detonation structure that has a sonic character. The result is 
not restricted to D ,  close to one, and D, may differ from its CJ-value (one), by an 
0(1) amount. Also when D,t = 0, D = 1, and AcJ - 1, one recovers the D,, K formulas 
discussed in the previous section. Also, D, can be greater than one provided that 
D,  - 1, and the formula (5.20) still applies. This corresponds to a slightly overdriven 
detonation, and $6 discusses this case in the context of large activation energy. While 
the above formula is quite revealing and contains much of the information needed to 
write down the evolution equation, the condition imposed by the thermicity condition 
must be considered, and that is discussed next. 

5.1. The thermicity condition 

If D ,  is appreciable different and below one (i.e. to sub-CJ), the balance in the 
thermicity condition (2.16) at the generalized CJ point is between the reaction and 
time-dependence (unlike the near-CJ case where it is between curvature and reaction). 
Recall that the flow approaches sonic when L‘ = (1 - A/D2)1/2 --+ 0. Thus t = 0 
corresponds to AcJ = D 2  to leading order; however a finer estimate is required in 
order to obtain closure. The leading-order result leads to an important conclusion. 
If D < 1, then ACJ < 1, thus the reaction rate at the sonic point ( r ) C J  is necessarily 
O( l), and cannot be balanced by the small curvature term #c2( V, + D,) found in the 
thermicity condition (2.16). Thus the reaction must be balanced by local unsteadiness, 
which can be induced by the sonic character of the flow. 

For the purpose of analysing the state in the thermicity condition we write 

D,  = D + KD’ + . . . , AcJ = D2 - A’ + . . . , (5.21) 

where A’ - O((D, t )2 ) ,  and is to be confirmed by the analysis. Thus a finer estimate for 
6‘ near the sonic point is L‘ = (A’/D2)’’2. The balance of reaction and unsteadiness is 
illustrated in the derivative t,t. From the definition of L‘ one finds 

(5.22) 

This formula shows that L‘,t can be 0(1) if the flow is quasi-steady, and the flow state 
is close to sonic, i.e. L‘,t can be calculated as the ratio of two small terms. Since 
G N (A’)’/* near the sonic point, we use the definition of / , t  to obtain an independent 
formula that can be used to estimate A’, 

2 

A’ = D2 [ 1 (-9 + D D , t ) ]  2 0. 
(e,t)CJD2 

(5.23) 

This formula suggests that when D < 1 and ( L ‘ , t ) ~ ~  - 0(1), then A’ - O[(A,t)&,(D,tj2], 
and can be neglected if the time variation is sufficiently slow, if d / d t  - O ( K )  (say). 
When D -+ 1, A’ can still be small, consistent with AcJ -+ 1, provided that (&,tjcJ -+ 0. 
This last property is shown from the leading-order thermicity condition, expressed at 
the generalized CJ point, which is a balance of reaction and time-dependence, and 
gives the leading-order condition, 

(5.24) 
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At the next order of approximation, the thermicity condition (2.16) contains the 
unsteady terms U,t and P , ~  which are found approximately by differentiating the 
respective leading-order approximation to U and p ,  to obtain 

(5.25) 

For the present purpose, we assume that the reaction rate can be expressed as 
depletion factor times a state-dependent rate constant of the general form r = r(1, c2), 
and expand appropriately. To simplify notation in what follows the subscript CJ or 
a plain variable, without a sub- or superscript, will identify the leading order, or 
leading-order CJ state, and a prime will be used to define the correction to the state. 
Expansion of the thermicity condition (2.16) in a straightforward manner gives the 
perturbation condition 

(5.26) 
D 

Y + l  
+ -(t,t)cj [KU’ - DKU’] = 0, 

where 

(r,d)CJ = - v ( r ) C J / ( l  - D2), (r,c2)CJ = e(r)CJ/[(c4)CJ]- (5.27) 

The c2-perturbation is known from the U2-perturbation, (c2)’ = 2UCJlcU’; the expres- 
sion for ( t , t ) ~ ~  is calculated from (5.24), and the U- and +perturbations at the CJ 
state were previously determined from the RH algebra; (5.17) and (5.16) are listed 
here for convenience: KU’ = - [ y / ( y  + l)] [KD’ + K(Z~ - Z2)D2 + (I1 + 31)D,,)] and 

The correction to the thermicity condition (5.26) is a linear relation in the quantities 
A’, KD‘, D,t and K.  A second linear relation follows simply from the sonic condition 
(5.20). By substituting the expansions for Dn and I C J  into (5.20), with the limit of 
integration in the integrals taken to be IcJ = D2, one obtains 

KU‘ = b / ( Y  + 111 w1 - 12)D + (11 + 251)D,t/DI * 

2 0 0 ‘ ~  + I’ + 2 ~ ~ ~ ( 1 1  - 12)D3 + 2DD,t [(y2 - 1)(Z1 + 3 2 )  + y2(Z1 + J i )]  = 0. (5.28) 

The solution of (5.26) and (5.28) for 1’ and KD’, gives 

where 

where bl and b2 are 

with the coefficients 

bll  = - - 2 ~ ~ ( 1 ~  - I ~ ) D ~ ,  

(5.29a, b) 

(5.30) 

(5.31) 

(5.32) 
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b12 = -2D[Y2(11 + 51) + (Y2 - 1)(11 + J2)1, (5.33) 

An independent equation for A’ is obtained from (5.23), and is needed in order 
to calculate a uniform approximation to the (b,, D,, K)-relation, for D close to and 
below one. This is reflected in the fact that while A’ is generally small and can be 
neglected for D < 1, it strictly cannot be neglected in the limit D + 1. Note that in 
(5.23), appears, and can be estimated from the rate equation as 

Using the above estimate and the expression for ( l , t ) ~ ~  from (5.24) in 
an estimate for A’ in terms of D and D,t: 

2 
rCJ J 

(rCJ12 UCJ D 
1’ = -(D,t)2 G(D) where G(D) = [ 5 (2 + --)I 

(5.36) 

(5.23) obtains 

(5.37) 

Finally, we use the above result (5.37) and the definition of D, = D + KD’ in 
(5.29a,b) to rewrite them as two relations between D,t,D, and IC (in terms of the 
parameter D) 

CiDi + C2D,t + C31~ = 0, (5.38) 

(5.39) 

where 

G 

YCJ 
C1(D) = 1(B+2D(r,n )cJ) ,  C2(D) = -Bb12+2Db22, C3(D) =2Db21-Bb11. (5.40) 

5.2. Intrinsic evolution equation 
As the (D,,I~)-relation in the original theory was reduced to finding a curve for the 
response of the detonation in a (D,,rc)-plane, it is useful to regard the (b,,D,,~c)- 
relation as a surface in a (b,,D,,~)-space. The surface is determined by eliminating 
the parameter D from (5.38) and (5.39) in favour of Ds,D, and IC. Also we note 
that to the order that is calculated here, the derivative D,t = dD/dtlo,,, represents the 
intrinsic derivative b,, hence we replace D,t by b,. 

Note that by elimination of D from (5.38), (5.39), for D d 1, one generates a 
(b,, D,, Ic)-relation that uniformly allows for values of D, below one and D, close to 
one. D, may be in the range from less than one to slightly greater than one; it is not 
allowed to be greater than one by an 0(1) amount. The restriction on the maximum 
of D, follows from the loss of the sonic character of the flow if the wave is strongly 
overdriven. For an overdriven flow D > 1, the flow behind the complete reaction 
point is subsonic, and in the most general case one must solve the Euler equations in 
combination with the conditions presented by the completely reacted reaction zone. 
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Because of the appearance of the rate integrals I1,12, J I ,  52, etc., the general case for 
all D < 1 is somewhat complicated and requires numerical evaluation to display the 
results. Indeed the composite description of the surface has two distinct branches, as 
we will illustrate in 35.2.2, for D < 1 and 35.2.3 for D - 1. But the formula presented 
here can be used to generate the D, - D, - Ic-relation as a surface, for finite but small 
IC and D,. 

5.2.1. Hyperbolicity and local stability 
The branches of the (b,,D,,~~)-relation must be checked to ensure that it corre- 

sponds to a hyperbolic PDE. This additional classification criterion derives from a 
frozen-coefficient analysis of the intrinsic PDE, and can be summarized as follows. 
Suppose that a differentiable relation exists of the form I@,,, D,, IC) = 0, and that we 
are interested in the character of the evolution of the shock surface in a neighbour- 
hood of the starred values, (b,)*,(D,)*,(K)*. Only for the purpose of analysing the 
local dynamics at small times, we consider a local Cartesian coordinate system along 
the normal, and tangent to the normal. Let x be in the tangential direction, and let 
Cp be the displacement of the shock along the normal. Then we further assume that 
the shock is now described by the expansions 

D, = (D,)* + Cp,tt + . . . , D,, = (D,)' + 4,t + . . . , IC = (IC)* - $,xx + . . . . (5.41) 

Insertion of the expansion (5.41) into F(&, D,, K )  = 0, and the neglect of higher-order 
terms leads to the linear PDE, 

(5.42) 

where we used the identities 

( a F / d D n ) * / ( d F / d K ) '  = -(d~/dDn)*, (dF/dDn)'/(dF/d~)* = -(d~/dD,)*. 

The condition for hyperbolicity that follows is simply that at each point on the 
surface 

(5.43) 

The local stability of spatial disturbances depends on the sign of the term ( d ~ ~ / d D , ) i ~ .  
This follows from the dispersion relation, which is found by substituting 4 = exp[At + 
ikx] into (5.42) and deriving the quadratic for A&). One obtains the conclusion 

< 0, stable 
(%)D" { > 0, unstable (5.44) 

In previous works, where D,, is absent, the stability of the corresponding (Dn,rc)- 
relation obeys that of the heat equation and the condition shown in (5.44) applies. 
In particular the under-side of the (D,,,~)-curve, where dD,/&c > 0, was incorrectly 
thought to be necessarily unphysical, since it corresponded to instability. In general, 
the response is only locally unstable, and nonlinear evolution consistent with the 
underlying hyperbolic dynamics is possible. In particular, for sub-CJ detonation in 
the presence of positive curvature, shock acceleration is possible, which allows for the 
nonlinear growth and acceleration of convex portions of the shock. 
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5.2.2. Sub-CJ detonation: D < 1 
When D, is significantly below one (D < l), then 1’ - O[(D,t)2] and we may 

neglect it. The balance in the thermicity condition is only between reaction and 
time-dependence. D, is accurately described to leading order by D. Then equation 
(5.29~) shows with 1,’ set equal to zero that the surface is represented by pbl = 2D,b2 
(with D, replacing D). This equation can be re-expressed as 

J. Yao and D. S. Stewart 

D, + A(Dn)ic = 0, (5.45) 

(5.46) 

Note that A(D,) > 0, hence by classification theory the intrinsic PDE is guaranteed 
to be hyperbolic. 

Importantly, as D + 1, for D < 1, the limit of this branch of the surface is tangent 
to a plane, that is only a linear (b,,~)-relation. Note that as D --+ 1, p -+ 0 and the 
evolution equation reduces to simply b2 = 0 (with D = 1) or 

(5.47) 

Notice that D,, = 0 corresponds to K = 0 for all D,. 

5.2.3. Near-CJ detonation: D - 1 
The other limiting branch of the surface is found by starting with the limit D -+ 1. 

The balance in the thermicity condition can be between reaction and time-dependence 
and curvature effects. As a result of the influence of curvature, the surface can be 
dependent on the depletion factor v .  

To illustrate this branch, note that as D + 1, ( r ~ ) ~ ~  + 00. Then (5.29b) reduces to 
the limit KD’ = b1/2. Then if we replace ICD’ by D, - 1, we obtain a second branch 
of the surface that is only valid near D, D, - 1 : 

In the case when the integrals 11, etc. are constants (which is the case for finite 
activation energy), then the above equation is also a plane in the (b,,D,,ic)-plane. 
The (&,D,,~)-plane found in this limit is also shown to be a hyperbolic PDE, 
however with a different transverse wave speed than for the branch D < 1. Also, 
classification theory shows that the PDE has a damped character due to the sign of 
the linearized term that is proportional to D, - 1. In the absence of b,, the PDE is 
classified as a parabolic PDE, which corresponds to the quasi-steady (D,, ic)-relation 
found by setting b, = 0. 

5.2.4. Combined formulas: D < 1 
One can use the formulas (5.38) and (5.39) to construct a uniform composite 

approximation to the (D,, D,,  relation that is valid for D, both near and below one. 
We replace D,, by b, and rewrite (5.38) as 

C,(D)bi + C2(D)bn + C~(D)K = 0. (5.49) 
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One can choose a value of D < 1 and K ,  and then use (5.49) to calculate D,,, or 
assume a value of D and b,, and use (5.49) to calculate K .  Then with the values of 
b,, K and D fixed, one uses formula (5.29b) to calculate KD' and hence D, = D + KD', 
thus generating a (b,, D,, Ic)-triad. Thus for a set of equations of state and kinetics 
parameters, one can generate plots of the (b,, D,, k-)-surface as well as contours in 
the (D,,~)-plane for fixed D n  (say); albeit the required integrals that appear in the 
formulas must in general be done numerically. 

The condition for hyperbolicity, that ( i 3 K / a b n ) D o  < 0, must be checked, and the 
boundaries of this inequality form are used to discard spurious regions and identify 
the boundaries of the relation. In general, if we solve (5.49) for D,,, we obtain 

(5.50) 

We have selected the - branch for Al l2 ,  which is a choice consistent with the 
requirement of the analysis that b, - o(1). Also, simply from the definitions of C2 
and C,, one can show that in the limit as D -+ 1, both CZ, C3 are finite and positive. 
Thus in an entire neighbourhood of the surface with D = 1 these coefficients are 
positive. Also one can show that as D + 1, C1 +. -m. Thus the surface must contain 
the limiting point b, = 0, D, = 1 and K = 0 for D = 1. We take the implicit derivative 
of equation (5.49) with respect to D,, holding D ,  fixed (where D, is approximated by 
D) ,  and find 

(5.51) 

Thus we find that the boundaries of the response surface (where the derivative changes 
sign) are defined by the conditions C2 = 0, C3 = 0, and d = 0. For D < 1, d is strictly 
bounded from zero, and is approximated by A N 1, for sufficiently small K .  However 
for D - 1, the boundary A = 0 is described by K = C,2/4C1C3. 

5.3. Example for a condensed explosive 
We display the (b,, D,, Ic)-relation for the important cases that can be used to model a 
condensed explosive. Gaseous explosive mixtures are better modelled by the analysis 
given in $6. The polytropic (ideal) equation of state is accurate in a quantitative 
sense only for gaseous mixtures. The use of the polytropic EOS for condensed 
explosives provides a useful, analytically tractable model that can generate the correct 
magnitudes for detonation speeds and states; however the equation of state in the 
unreacted explosive is poorly modelled. The condensed-phase model has been used 
by us in the past for the purpose of analytical testing of numerical schemes and 
qualitative predictions about detonation shock dynamics, Stewart & Bdzil (1993). 

In order to generate model results for qualitative and numerical testing purpcises for 
a representative condensed-phase explosive, it is important to choose parameters that 
reflect the reacted products behind the detonation shock and to display the results in 
physical units. Representative parameters are y = 3, an initial density PO = 2 g CM-~, 
a heat of combustion Q = 4 x lo6 J Kg-'. The corresponding CJ detonation speed, 
from the strong-shock approximation gives bCJ = (2(y2 - l)Q)'I2 = 8 Km s-'. The 
depletion parameter v is chosen to be 1/2. The pre-multiplying rate constant k" 
controls the size of a steady half-reaction length, but typically one chooses it to 
correspond to a typical reaction-zone length in a condensed explosive, which can 
range from 1/10 to a few millimetres. The value k" = 2 . 5 1 4 7 ~ ~  corresponds to a 
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steady half-reaction-zone length, = 1 mm. When the activation energy B is taken 
to be zero, the rate integrals, 11,12, J l ,J2 ,  J can be carried out analytically, and those 
exact integrals are listed in Appendix D. 

Figure l(a) shows a surface plot of the (b,,D,,~)-relation, for the condensed 
explosive case ( y  = 3 , v  = 1/2,6 = 0), generated from the formulas of the previous 
section. The surface is plotted in a space that has D, in the vertical direction, ic in the 
horizontal x-direction, and D, in the out-of-plane direction. Contours of constant & 
are shown and labelled in the surface. For all the plots, the half-reaction length is 
used to scale the curvature. 

The surface has a tent shape with a distinct fold near D, = 1, which separates the 
two branches of the surface, D < 1 and D - 1. The plane b, = 0 intersects the surface 
along the (D?,rc)-relation for ic > 0. Also the plane intersects the surface along the 
vertical line D, = 0,rc = 0 for all D,. Thus in the surface, the contour b,, = 0 has a 
discontinuous derivative exactly at D, = 1. The segment of the surface that is related 
to the branch D - 1 is completely visible in the surface plot and can be reasonably 
well-fit by a plane given by the equation 

63.6 D, + (D, - 1) + 8.35 ic = 0. (5.52) 

The segment of the surface near D, = 1 on the branch D < 1 is well-approximated 
by the (b,,ic)-relation given by (5.47). The surface is terminated by the edge of the 
box on the left side of the plot. The lower portion of the surface is terminated by the 
edge of the box. The left edge of the surface for ic < 0 correspond to the hyperbolic 
boundary d = 0. 

Figure l(b) shows the projection of the surface onto the (D,,ic)-plane, with the 
contours of D, indicated. For this case, where the activation energy is zero, increasing 
negative curvature is associated with decreasing values of D,. This is not the case for 
large activation energy. 

5.4. Numerical experiments : diferences between hyperbolic and parabolic evolution 
Next we present the results of some two-dimensional numerical experiments and 
comparisons that use (D,, D,, ic)-relations. The numerical solutions of the intrinsic 
PDEs shown here were carried out in collaboration with T. Aslam, and employ a 
level-set technique that follows the work of Osher & Sethian (1988). The numerics 
are described briefly in Stewart et al. (1999, and in detail in Aslam Bdzil & Stewart 
(1995). The main points to be demonstrated concern the qualitative differences 
between the detonation shock dynamics predicted by a (b,, D,, K-)-relation and those 
corresponding to a (D,, rc)-relation, and their prediction of detonation shock dynamics 
observed in physical experiments. 

Our example illustrates the qualitative difference between the hyperbolic (D,, D,, ic)- 

relation and the corresponding parabolic (D,, ic)-relation, for the parameters of the 
condensed-phase model, discussed in 95.3 and illustrated in figure l(a, b). We restrict 
attention to the branch of the response surface for D - 1, approximated by (5.52). 
We display the results of the first numerical experiment in length and time units of 
mm and ps, respectively, and in these units (5.52) becomes 

8, = 8 - 66.8R - 7.958, , 

B, = 8 - 66.8R . 

(5.53) 

with the corresponding (Dn, Ic)-relation 

(5.54) 
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FIGURE 1. (a) Surface plot of the (D,,D,,K)-relation for the condensed-phase case, with 
y = 3 , v  = 1/2. The curvature IC is scaled with respect to. the half-reaction length. Contours 
of constant D, are shown and labelled. (b) .  Projection of the (D,, D,, rc)-relation to the (Dn, rc)-plane, 
for the condensed-phase.case. The branch D - 1 is transparent, and the branch D < 1 is shown in 
grey-scale. Contours of D, are indicated by the labels. 

A slab with a half-width of 50 mm and length of 400 mm was used for the 
experiments. At time t = 0, a plane, CJ shock is assumed at x = 0 mm. Solutions for 
the shock dynamics in finite domains require boundary conditions to be applied at 
edges for all time. At the bottom edge ( y  = 0 mm), we assumed an angle boundary 
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FIGURE 2. (b)  A solution of the 
(b,,D,,lc)-relation given by (7.1). The grey-scale records values of D, at a fixed point when the 
shock crosses it. The first shock position from the left is at 3ps, and the time intervals between 
subsequent shocks is 3.61 ps. 

(a) The solution of the (D,,lc)-relation of equation (7.2). 

condition, and in particular the angle between the outward normal of the confining 
edge and the normal to the shock was taken to be 45". At the top edge (y = 50 mm), 
the confinement was assumed to be perfect and corresponds to a symmetry (or 
reflection boundary conditions), and the angle between the outward normal of the 
confining edge and the normal to the shock was set to 90". 

Figure 2(u,b) shows combined contour and line plots that show features of the 
numerical solution the initial-boundary-value problem defined above. Figure 2(a) 
corresponds to a numerical solution of the (D,,K)-relation defined by (5.54) and 
figure 2(b) corresponds to that defined by (5.53). The different greyscale contours, 
separated by lines that run roughly along the axis of the slab, indicate the value of 
the detonation velocity recorded at a fixed Eulerian point in the slab, at the time that 
the detonation shock crosses the point. Dark regions correspond to lower normal 
detonation velocity and lighter regions higher values. The shock positions are also 
shown at various times, at equal time intervals of 3.6 p s, and cut transversely the 
lines of constant d,. 

The most obvious difference between the two simulations is illustrated by the 
relaxation towards an axial steady state of an initial plane-CJ shock, in response to 
the edge boundary condition applied at y = 0 mm. The relaxation of the solution 
(D,, K-)-relation from plane-CJ to its axial, steady-state in response to a step change 
in slope is via local, self-similar relaxation, characteristic of the heat equation. This 
is seen in the curves of constant dn where, y cc x ' / ~ .  In contrast, the hyperbolic 
character of the solution to (5.53) is seen by the curves of constant d, with y cc x 
that are the consequence of the self-similarity of the local wave equation that governs 
the early transient. Also the relaxation for the (D,, Ic)-relation, shown in figure 2(a), is 
accomplished quickly in the first 100 mm (say), while an obvious transient still persists 
in the solution of the (b,, D,, K-)-relation, even at 400 mm, four slab thicknesses wide. 
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The constant-D, contours show evidence of multiple wave reflections of the initial 
disturbance off the confinement boundaries. The shapes of the axial, steady shock loci 
are different in the two cases, which is due to the effects of the normal acceleration, &. 

6. The limit of large activation energy and small curvature and slow 
evolution 

In this section we separately consider a distinguished limit of large activation en- 
ergy and small curvature and slow evolution, suitable for the description of a gaseous, 
pre-mixed explosive with a sensitive reaction rate. We relax the strong-shock approx- 
imation that is used in $5, and instead use the general shock relations. Ultimately, 
we derive an intrinsic equation of a more complex form, F(B,,bn,D,,~,k) = 0, 
by means of two successively applied iterations that determine corrections to the 
steady plane CJ detonation structure. This equation, when plane, with IC = k = 0, 
reduces to a (b,, b,, D,)-relation, which is a second-order ordinary differential equa- 
tion. It will be shown that this ODE admits a simplified stability theory, and has 
a neutral stability boundary in an ( E ,  Q)-plane, which corresponds asymptotically 
to the exact linear stability curve calculated in Lee & Stewart (1990). The same 
ODE also admits limit-cycle pulsations that correspond to those first found nu- 
merically by Fickett & Wood (1966), in the numerical solution to the reactive Euler 
equations. 

When multi-dimensional solutions are considered, this new relation is an intrin- 
sic PDE: a nonlinear wave equation. For reasonable sets of physical parameters, 
corresponding to gases, the PDE contains a hierarchy of hyperbolic wave families. 
The lowest-order family is simply the first-order hyperbolic PDE that corresponds to 
Huygen’s construction, D, = 1 ; the second corresponds roughly to a b,, K pairing, 
and the pairing of the highest-order derivatives of b, and ic corresponds to the wave 
operator that controls the type of the equation. We have found, in collaboration with 
T. Aslam, that this PDE admits cellular dynamics for the motion of the detonation 
shock, and that the dynamics and cell growth of the solution are remarkably similar 
to those observed in the physical experiments. 

To explain this further, we mention some aspects of the observations of multi- 
dimensional detonation cells in experimental systems, such as those observed by 
Strehlow et al. (1967) in dilute hydrogen-oxygen explosive mixtures. In a typical 
experiment, a long rectangular channel is used to contain an unreacted explosive 
mixture of hydrogen/oxygen gas, diluted by argon (say). The mixture is ignited at 
a closed end and is allowed to propagate down the tube. As it propagates, the 
detonation shock, instead of being plane, has a set of disjoint cells, which are made 
up of segments of the detonation shock that travel at different normal velocities, 
and correspond to quite different shock pressures. The segments of the detonation 
shock are resolved by shock/shock interactions that may be regular, or may lead to 
Mach-stem formation and growth. In the case of a regular reflection, the triple point 
remains, while in the case of Mach-stem growth, the point of interaction becomes 
two triple points connected by a bridge that grows in width. Thus the cellular 
detonation shock front can be characterized simply as a network of triple points that 
are connected to smooth shock fronts. 

In the physical experiment, the inside of the tube is lined with foil that is covered 
with soot, typically from kerosene burned in air, which is partially scraped away by 
the high-pressure detonation shock that intersects the tube wall. In particular, the loci 
of the wall motion of the shock triple points are easily recorded by the smoke-foil 
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technique. In the foil one sees the characteristic patterns enscribed by the motion of 
the triple points. We find that remarkably similar patterns are generated by solution 
of the (b,, D,, D,, IC, k)-intrinsic PDE, that we derive here. 

Thus we find that a single evolution equation, of hyperbolic character, can describe 
many features of the motion of the cellular detonation front. The new intrinsic PDE 
admits weak solutions with continuity of the shock locus, but with discontinuities in 
the shock slope. The points of the intersection, where the shock slope is discontinuous, 
between different otherwise smooth shock segments correspond to the location of 
triple points in a numerical experiment. These points moved from side to side on 
the shock front as the shock moved forwards. When the triple points collide with 
the side wall, they are reflected back into the channel, as would be expected in 
the physical experiment. For many of the numerical experiments we tried, cells 
would form quickly and the number of cells (counted from the patterns that the 
triple points made as they propagated down the channel) would persist. However 
by varying the spatial frequency of the initial sinusoidal shape of the shock and the 
initial velocity, we almost always found that the frequency of the initial data was 
not preserved. Indeed, as in the physical experiments, the cells actually absorb other 
cells, and generate larger cells as time evolves. These larger cells then persist and are 
self-sustained. 

For large activation energy the reaction zone is an induction zone, followed by a thin 
heat-releasing reaction zone. The analysis that follows is motivated from our previous 
work in Yao & Stewart (1995), where we calculated the (D,, Ic)-relation in the absence 
of any additional time dependence. There we assumed that the small curvature is 
measured on a typical induction-zone length scale for the plane-CJ detonation, and 
is specifically O(l/O) on that scale. Deviations of the normal detonation velocity of 
O(D, - 1) were assumed to be of the same order; and as a consequence, the analysis 
showed that the (D,,K)-relation is multi-valued in D, for a limited range of K ,  and 
that a critical pair [(Dn)cr,~cr] exists such that for IC > xCr,  no asymptotic solution 
of this type exists. Importantly, this calculation employed matched asymptotic layer 
analysis. A similar analysis, rigorously done, that also uses matched asymptotics and 
not an ad hoc analysis was recently carried out by Klein, Kroc & Shepherd (1995). 

Unlike the above-mentioned calculations, we use the MSA technique, and work 
with the integrated form of the problem. Some additional features of this calculation 
should be explained as background, in advance of the presentation of the details. 
In the case of large activation energy, since the reaction can change by an 0(1) 
amount in response to a temperature (sound speed) perturbation of O(l/O), one 
must necessarily calculate the effect of the temperature perturbations explicitly in a 
well-defined induction zone (IZ); and the IZ is near the shock. At the same time, 
the integration must be carried out approximately all the way to the generalized CJ 
point. So it follows that if one uses the reaction coordinate, 1, as the independent 
variable, in place of n, one integrates from 1 = 0 to 2 = 2cJ, and the induction zone 
is accounted for explicitly as a region of small reaction depletion by the introduction 
of a scaled reaction progress variable, A =  z/O. 

Because of the use of 1 as the independent spatial-like variable, the integrals that 
appear on the right-hand side have the inverse reaction rate r-]  in the integrand. 
As one leaves the IZ, the region of small depletion, towards the region of large 
heat release, the fire, the reaction rate become exponentially large, and many of the 
integrals that appear have exponentially small contributions in the fire region. The 
fact of this exponential convergence, reflecting the stiff tightly organized fire region, 
which in reality has a very simple structure, makes approximating the structure with 



Dynamics of multi-dimensional detonation 247 

two iterations tractable, since one can carry out the indicated integrals largely by 
using IZ approximations. 

In a sense, the fire remembers the events of the induction zone and follows it. 
The induction zone and the fire, however, retain their separate identities, in that the 
velocity of the fire relative to the shock comes out explicitly as the time derivative 
ACJ,  as in equation (5.6), through the application of Leibnitz’ rule. (Note that when 
we refer to a time derivative, a/atl,, that later must be interpreted as an intrinsic 
normal time derivative, we use the dot notation, interchangeably). 

To carry out the calculation using the MSA technique, one only has to assume that 
at each level of iteration one adds higher-order corrections, with successive iterations. 
As one carries out the iteration, one has the option to drop terms that are deemed 
higher order, for the purpose of simplifying the calculation, and indeed this is a 
rational procedure provided one stops at a certain order in the calculation. Again the 
MSA procedure is entirely similar to a numerical approach used to solve the steady 
ODES described in Yao & Stewart (1995). 

The specific sequence of the iteration is important in order to efficiently carry 
out the calculations that yield the final intrinsic PDE. The one that works well 
generates the steady (D,,K)-relation with the turning point in the first iteration and 
was determined as follows. The zeroth iteration is the one-dimensional steady CJ, 
zero normal derivative solution. This solution does not depend on time and hence 
does not generate time derivatives when constructing approximations to the terms 
on the right-hand side of the PDE. One does generate the terms associated with the 
curvature corrections on the right-hand side. However it is not accurate enough to 
simply use the zeroth-order solution to estimate the inverse reaction rate, prior to 
the computation of the integrals. Indeed the greatest contribution to the integrals 
in 1 is in the IZ, for 1 N O(l/O). In particular, the reaction rate itself is a function 
of the perturbed temperature which in turn is a nonlinear function that must be 
calculated. This is done by carrying out a separate IZ calculation to determine the 
perturbed temperature, and hence the rate, in terms of the small amount of reaction. 
The weight of the integrals is then changed by accounting for the spatial corrections 
to the reaction rate induced by the IZ. 

With the improved estimate of the reaction rate r ,  the calculation of the integrals, 
with their dominant contributions from the IZ, can be carried out easily, and indeed 
the nearly conservative form of the equations yields corrected RH-relations that 
have explicit dependence on both scales 1 = z/O with z - 0(1), and 1 - O(1); 
the former is on the scale of the induction zone and the latter on the scale of 
the fire. Of course in the integral treatment, the layers that would be present 
in a matched asymptotic treatment are automatically matched, since the integral 
technique automatically generates composite expansions. The steady (D,, rc)-relation 
in fact can be obtained after the first iteration, if desired, by suppression of an 
apparent singularity as 1 + 1. 

Having completed the first iteration, one has introduced time dependence in the 
corrections by exact application of the shock conditions, in terms of D,. In computing 
new approximations to the right-hand side, D, - 1 and D, appear explicitly. But 
importantly at this stage, explicit consideration of the effects of acceleration of the 
shock is introduced. The second iteration involves corrections to the IZ, and a new 
estimate for the temperature perturbation, which in turn give an improved estimate 
of the reaction rate in the IZ. The corrected IZ solution and the corrections to the 
rate allows one to compute improved corrections to the integrals, and ultimately new 
corrections to the RH-relations. Finally, D, and the appearance of k occur, roughly 
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speaking, through the calculation of the time derivative of ncJ, or the velocity of the 
fire, relative to the shock. The evolution equation is finally computed by using the 
solution to the RH-algebra to estimate the values of the states at the generalized 
CJ-point and then substituting the result into the sonic condition and thermicity 
conditions. 

One can interpret this analysis as an exercise in low-frequency nonlinear acoustics, 
where one has explicitly accounted for the lowest fundamental acoustic modes. Since 
two refined iterations are carried out to generate approximate solutions to the full 
Euler equations, a fairly large number of terms associated with D,,,Ic and their 
derivatives are generated and must be kept and finally collapsed into a surface 
relation. The derivation of the new intrinsic PDE follows next. The algebra is 
extensive, but we have made every attempt to make the procedure clear. But some 
details are necessarily left to the reader. Additional information is available in Yao’s 
(1996) thesis. 

6.1. General shock relations 
Because of the extreme temperature sensitivity of the reaction rate, combined with 
the fact that the representative physical experiments in gases are not for extremely 
high Mach numbers, we must necessarily relax the strong-shock approximation, and 
carry out the calculations for the general shock relations. The square of the inverse 
Mach number of the plane CJ detonation shock 

z; 
@-’ 

a = -  

becomes an additional parameter that is zero in the strong-shock approximation. The 
(dimensionless) general normal shock relations for an ideal gas are given by 

P(0) = y+l 1 (ZD: - - y%), A ( O ) = O ,  
Y 

C ( O ) ~ = L  (Y + (y--1+2$) (2D’-- - Y 18) 

Also we note that in the regular shock relations, the parameter q = Q/& = 
(1 - S ) 2 / [ 2 ( y 2  - l)]. We also now reserve the s subscript to refer the one-dimensional 
steady CJ shock values (with D, = 1 in the general shock relations). For example 
us = u(0;  D, = 1) = ( y  - 1 + 26)/(y + 1). Similar relations hold for the other variables. 
A full list can be found in Appendix E. 

6.2. One-dimensional steady state 
Similar to 93, the RH relations hold in the steady structure and are solved to obtain 
the following solution in terms of 2 (here we use the * superscript to denote the 
steady state) 

U ’ -  y - - e  I + [  t Y - - e  1 + e  * 1+e  6 
+ 1 + Y + l  y + l  y + l  y + 1 ’  =- -[) 9 (6.5) 6-, 0 =- +a- 
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where we have slightly changed the definition of h' from that in $3 to 
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e = (1 - j1)1'2 

The solution given above is the starting guess for the iterations that follow and is the 
leading-order description, or the zeroth-order iterate. 

6.3. Scaling 
The characteristic reaction-zone length is explicitly identified as the induction-zone 
length of the plane-CJ detonation, commensurate with the half-reaction length found 
in the limit of large activation energy, where z,, = k"-1bcrexp[8/c~]/0, and where ct  
represents the zeroth-order shock temperature (sound speed squared) and is explicitly 
given by 

Therefore the reaction rate is written as 

6.4. First correction to the induction zone 
The first iteration begins with an estimate of the right-hand side of the nearly 
conservative form of the equations (2.10)-(2.12). The zeroth approximation is steady 
and thus only the two terms proportional to the curvature in the mass and momentum 
equations survive, since the zeroth approximation is not time dependent. We also 
choose to replace n- dependence with A-dependence, and to do this we use the steady 
form of (2.13), and drop the contribution from A,t. To obtain the steady (Dn, rc)-relation 
consistent with the earlier calculations, one must generate an improved estimate of 
the reaction rate r in the IZ. 

For the purposes of computation of the solution structure in the IZ, we suppose 
that the induction zone is a region of small depletion whose independent variable is 
z - O( l), defined by 

A = -  
0 '  

A single equation for the perturbation of the temperature (sound speed squared) can 
be obtained by direct consideration of the Master equation and Bernoulli's equation. 
Therefore we assume only that D, - 1 = o( 1) and introduce the local IZ expansions 
for the sound speed squared (temperature) and the velocity, 

(6.7) 
Z 

(6.8) 
2 2 Y  c = c, + -, un = us + U'. 

0 

The reaction rate is then estimated from (6.6) in terms of y as 

eYl4 
r = -  

0 .  

At this point we list the Master equation, in the reaction coordinates, and the 
integrated Bernoulli equation (reduced equation (2.12)) to display the terms that are 
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retained in the local IZ description, as 
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au Un 
(c2 - V , ' ) L  = [qr(y - 1) - I C C ~ ( U ,  + D,)] -, r an 

D2 6 qR = + -, u; c2 
2 7 - 1  2 y - 1  
-+-- 

(6.10) 

(6.11) 

An equation for y is obtained simply by differentiating Bernoulli's equation (6.1 1) with 
respect to A, using the result to replace the derivative aU,/aA in the Master equation, 
followed by the use of the approximate expansions introduced above. The boundary 
condition for y comes from the linearization of the shock boundary conditions. One 
obtains the following problem for y : 

subject to the boundary condition that 

y = pc39(D, - 1) at z = 0, 

(6.12) 

(6.13) 

where the definitions of constant parameters a,p, and p are in terms of shock-state 
values and q,  and are given here in terms of y and 6 as 

1 - 6  
[3y - y? - S(3y - l)], p = 2- (y - l) [2y - S ( y  - l)](y - 1 + 26)2, 

c( = 2(y + 1)2 (Y + 

(6.14) 

The solution for y can be written succinctly as 

(6.15) 
a2 

y / c :  = pe(D,  - 1) + - + Y ,  
4 

where 

9 = In 1 + - e-az/c;)e-MVDn-l) (6.16) 1 Y" 
The reaction rate can now be expressed using the solution just given for y as 

az/c:+@(Dn-l)+.Y (6.17) r = e e  
The solution for the first approximation in the IZ can now be expressed as 

I 1 1 - 6  d 

2 y + l  
1 1 - 6  d 

un = U,(O) - -----A + $9, 

V = V(0)  + --A - -9, 
2 y + i  e 

c4 
c2 = C ( O ) 2  + an + 29, e 

(6.18) 
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where ~7 is a constant defined by 

25 1 

(6.19) 

If desired, one can now simply generate a composite solution through the fire zone, 
by integrating the right-hand side of the quasi-conservative equation with respect to 
the independent variable A, which we indicate as 

(6.20) 

One uses the above definition of (&)-l in the IZ, from (6.17), and carries out the 
indicated integrals. The relations now represent modified RH-relations, which can 
be solved approximately to first order in the perturbations to obtain composite 
expansions of the form 

where 

(6.23) 

The steady (Dn, Ic)-relation found in Yao & Stewart (1995), for example, is obtained 
by suppressing the singularity that otherwise would appear as t + 0, and by setting 
h(z = co) = 0. One can easily verify that the condition leads to the result 

where the coefficients a, b and d are defined by 

(1 + W Y  - ll(Y + 
( Y  + 4[2y - S ( y  - 1112’ 

(Y - ll(Y + U3[3Y - 1 + 6(3 - 711 
= (y + S)(y  - 1 + 2S)2[2y - S(y  - 1112’ 

a =  

4(Y - l ) (y  - 1 + 26)2(2y - y6 + 6) d =  
(1 - S) (Y  + 1)’[3~ - y 2  - S(3y - l)]’ 

(6.24) 

k (6.25) 
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6.5. Second correction to the induction zone 
Now we use the induction-zone approximations from the first iteration to system- 
atically add the effects of unsteadiness to the description of the IZ. Note that the 
first approximation now explicitly includes quasi-steady time dependence through the 
appearance of both D, and IC. Upon differentiating with respect to time the first 
approximation, and using the result in the right-hand side of the nearly conservative 
form of the governing equations, one adds the derivatives D,, = b,, and IC,, m k. Also 
since we use the reaction coordinate as the independent variable, we use the corrected 
change of variable, dn = U J ( r  - must be computed. We 
consider this estimate next. 

Starting with the integrated definition, n = Jt U , / ( r  - A,t)dX, further differentiation 
with respect to t holding n fixed gives 

and an estimate of 

(6.26) 

where we assume that N o(r), and use the IZ approximations from the first iteration 
for r from (6.17). Carrying out the indicated differentiation and integration, gives the 
estimate for A,, 

A ,t - - cIc,i)n(eaz/c: a - 1).  (6.27) 

At this level, one can compute additional corrections to A,t, but later these terms 
are time differentiated or multiplied by other small terms, and we can neglect those 
contributions. 

In the differentiations that follow, we also encounter the derivative, 9,t In, which is 
calculated from the definition of 2' and the chain rule formula, Y,tIn = 2 , t I i + 9 , n I t A , t .  
One finds the estimate 

2,t[, = 53. (6.28) 

In what follows we make the explicit assumption that k N o(b,) ,  hence we have that 
Y,tI,/O - o(&), and we use that to simplify the next set of approximations. 

The second iterated corrections to the structure of the IZ are based on using 
the results of the first iteration to estimate the various time-derivative terms in 
the right-hand side of the nearly-conservative form of the governing equations, and 
then expressing the result in terms of the corrected Master equation and Bernoulli's 
equation, in the scaled IZ reaction coordinate, z = 16. One again needs to be 
particularly careful in expressing the reaction rate in the IZ, due to the exponential 
sensitivity of the rate on the temperature. For example the following ratio that appears 
in the change of variable is expressed approximately as I/(r--&) = r - l ( l + l , t / r ) .  Again 
one obtains a correction to the sound speed squared represented by c2 = cf + y /O ,  
and derives an equation for y. This can be done directly since we drop terms in the 
resulting equation for y that are O(l/02).  The approximate Master and Bernoulli's 
equation that we use to compute the second IZ corrections are listed as 

4 

K 

P u n  
(6.30) 
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In Bernoulli's equation, we can use the approximation in its right-hand side that 

C2 
- + - - qA] = D,&. [Y y - 1  ,t 

(6.31) 

For convenience we define the time-dependent terms that appear on the right-hand 
side as 

H = Un( Un,t  + Bn) - V P , ~ ,  G = uP,t - bn( Un + D n ) .  (6.32) 

Then using the first-iteration IZ approximations, we can obtain approximate expres- 
sions for H and G as 

(6.34) 
2[y - 3 + ( 5  + y)6] . 

G =  Dn - 
(1 - 6)(y - 1 + 26) 

4 t .  
2(Y + (Y + 

Thus we can recast the revised Master and Bernoulli's equations as 

(6.36) 

As in the first iteration, one uses Bernoulli's equation to obtain an approximate 
expression for aU,/aA, and substitutes into the Master equation to obtain a new 
approximate equation for y, where the reaction rate can be approximated again with 
(6.17). The new equation for y becomes 

subject to the shock boundary condition 

y = p c % O ( ~ ,  - 1) at y = 0, 

where 

+ ple& + P26J,t + o(q t ) .  

The new parameters are defined by 

(6.38) 

(6.39) 

(6.40) 

( y  - 1 + 26)2(3 + 6) 
(Y + 

Y - 1 2  
8 2  = - 3 % .  
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The new IZ solution for y ,  gives a new expression for Or = eyjc; as 

(6.41) 

At this point we have calculated the second iteration of the IZ, and we next discuss 
the integration of the various integrals on the right-hand side, using the results of 
the first iteration to estimate the various time-dependent terms, and the corrected 
estimate of the reaction rate in the IZ, given above. 

6.6. Second iterated correction to the Rankine-Hugoniot relations 

In this section we discuss some of the details of the computation of the integrals 
that are indicated by the formal integration of the nearly conservative form of the 
governing equations from the shock to the generalized CJ point. One must integrate 
the full equations from n = 0 to n = ncJ,  or equivalently from A = 0 to AcJ. Once 
the modified RH-relations are obtained, one essentially substitutes the result into the 
sonic and thermicity conditions to obtain the evolution equation. A calculation of 
LCJ is required for the latter condition, similar to that discussed in $5.1. 

For the purpose of presentation of some the details, it is convenient to introduce 
the integrals 

(6.42) 

As before, ~ Z C J  is the length of the reaction zone from the shock to the generalized CJ 
point, and I can be regarded as a characteristic time that a particle is resident in the 
region between the shock and sonic point. These integrals are computed subsequently 
with IZ approximations and the reaction rate, corrected with two iterations. Many of 
the other integrals that appear subsequently, can be expressed as combinations of I 
and ncJ, and their time derivatives. 

Evaluation of I and ncJ and other integrals 

To evaluate I and ncJ, one uses the expressions for A,t given by (6.27), and r given 
by (6.41). Both integrals are approximated by their dominant contributions in the IZ. 
Note that as z increases, where A = z/O, then r-l becomes exponentially small and 
subsequently corresponds to exponential convergence in the integrals. Appendix E 
gives a list of useful relations and integrals that are used in the computations that 
are indicated by asymptotic approximations in the IZ. In order to finally obtain the 
evolution equation to a consistent level of accuracy, we keep terms up to O(eb>, )  in 
I and ncJ;  higher accuracy is not needed because in the final form of the evolution 
equation, the integrals I and ncJ, appear as terms in products with other terms, i.e. 
O(Ib , ) ,  O(ncJb,), O(Z2), etc. In particular, in the computation of I and ncJ, one can 
neglects terms proportional to R, kOb>,, and ercb,. With these provisions, carrying out 
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approximations to the integrals I and ~ Z C J  gives 

and 

where 

where 

(6.45) 

and where Un(0) is the exact value of Un at the shock, and hence is defined in terms 
of Dn by (6.2b). 

Next we approximate the integrals and terms that arise from the integration of the 
right-hand side of the nearly-conservative equations from the shock to the CJ-point. 
Note that the naming convention used here is to reserve the 9 for the integrals for 
the two curvature terms that appear in the older quasi-steady theory, 9 1 , 9 2  (in the 
absence of the explicit time derivatives), and to use f ,  for the integrals that arise 
from the time-dependent terms. Also in the expressions for f l  and $3, we show 
the result of the application of Leibnitz' rule, which accounts for the fact that we 
integrate to ncJ (in order to apply the generalized CJ conditions) and which shows 
the explicit appearance of the velocity of the fire relative to the shock, hCJ. We list 
these below for (re)naming purposes, for clarity and to indicate the calculations that 
follow : 

Pelc -@(Dn-1) Y ~ J  = Y(z = 00) =In 1 + -e 
l a  

(6.46) 

- D,, pdii = DnI + . . . , (6.51) 
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- + - - qR dii = -DJ + .. ., 
2 y - 1  

n C J  

- D,, 1 dfi = -DflncJ. 

(6.52) 

(6.53) 

As an example of how to continue to further approximate these integrals, we first 
discuss the computation of $1. Use the first IZ approximation for p ,  change variable 
from n to 1, approximately compute the integral, followed by the differentiation of 
the result. Terms in the integral are retained to O(&) and O(ic), which gives the 
following approximate formula: 

The integrals 91~92 are estimated in terms of I as 

.... 
1 - 6  
Y + l  

(Y - 1 + 26II + 

(Y + 
91 = 2K-I + * .  . ., $2 = 2 K ( 1  - 6) 

(6.54) 

(6.55) 

The integrals $ 2 , 2 3  can be computed in a similar fashion to f l ,  and are approxi- 
mated by 

Formal integration and Rankine-Hugoniot algebra 
Now, we can express an approximation of the integration of the nearly conservative 

form of governing equations to the generalized CJ point. Directly expressed in terms of 
the previous integrals, we find the following modified RH-relations at the generalized 
CJ point (similar to (5.10)-(5.12): 

where c : ~  = ~ P C J / ~ C J .  The object now is to solve for the CJ states, pcJ,  (U&, P C J ,  &--, 
subject to the constraint of the sonic and thermicity conditions at the CJ point. 
Therefore it is necessary to solve the algebra explicitly for that purpose. Note further, 
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that pcJ, (pU,)cJ and pcJ appear both on the left- and the right-hand side of the 
modified-RH relations, through the definitions of 

We explain a simple procedure for inverting this algebra. First, exhibit all the explicit 
CJ-dependence, some of which appears in the integrals on the right-hand side. Then 
manipulate the algebra to obtain an explicit equation for ( u , ) ~ .  The other states 
follow simply. To do this, we use the definitions of the integrals, 91,$2,$1,$2,$3, 

in terms of I and ncJ and their time derivatives, and by direct substitution one can 
rewrite the relations to exhibit the CJ states as 

$2, f 3 .  

(U%J 
2 

where the intermediate 
formulas as 

(6.63) 

variables R1, R2, R 3  are found by comparison with the previous 

(6.64) 

(6.66) 

Note that by writing the modified RH-algebra in this way, we have displayed the 
constants associated with the shock and the quasi-steady integrals and the CJ-states 
explicitly. 

The next step is to obtain an explicit equation for (Ufl)cJ,  as follows. First substitute 
( ~ c J ( U , ) C J  + D,) from (6.61) into (6.62). Next, divide the resulting equation (6.62) by 
~ C J  and replace ~ C J / ~ C J  by & / y .  The sonic condition can then be used to replace 
c$,/Y by ( V ; ) C J / ~ .  The density p c ~  still remains in this reduced momentum equation, 
but it can be replaced in the mass equation (6.61) to obtain an equation that is 
quadratic in ( U,)O : 

So far, we have only used the mass and momentum equations and the sonic condition 
to obtain (6.67), and we have not yet used the energy equation. This quadratic can 
be solved directly for ( U J C J ,  as a perturbation from the steady one-dimensional, 
solution, (UfljlJ = - [ y / ( y  + 1)](1+ 6 / y ) :  
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We notice further that we can get an expression for pcJ from the mass and 
momentum as follows. By using the substitution (Un)cJ = C& = ypCJ/pc~ in the 
momentum equation (6.62), using the mass equation (6.61) to eliminate PCJ in favour 
of ( U n ) i J ,  and discarding terms assumed to be higher order than it$J, one obtains for 
PCJ 

] (6.69) 
6 

P C J  = - [.n + 5 + ( P & ~ C J  + 91 + R I ) ~ C J  + R2 - 9 2  . 
Y + l  

We now write down the CJ-states at the sonic locus which are summarized below. 
For the purpose of comparison with the result of §5 (5.20), we define the intermediate 
variables S1 to SS as 

1 
+ 1 ($1 + Rl)]. (6.73) s6 = - 

Then the CJ states can be represented as 

+ Dn 2s2)] + S4, (6.74) 

(6.76) 

Again c i J  can be obtained from the product Y P C J U C J  or ( Un)iJ. 

the sonic condition) into the energy equation to obtain 
Next we substitute the results of the CJ states (which have already been employed 
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(6.77) 

Note that there is a direct correspondence of terms in conditions (6.77) and (5.20). 
The terms 9 1  and 9 2  correspond to Ilic and I~Ic, respectively. The term S1 correspond 
to Ilbn, S2 corresponds to J1bn and S, corresponds to J 2 D n .  Similar to the result in 
$5 (5.20), the last equation is a relation between f i n ,  bn, D,, IC, ri: and ICJ .  An analysis 
of the thermicity condition gives the remaining condition on IcJ. 

6.7. The thermicity condition and the calculation of IcJ 
As in $5, the last step toward the evolution equation is the calculation of IcJ, which 
follows from the thermicity condition (2.16). We start with the thermicity condition 
to leading order (corresponding to (5.24)), written as 

(6.78) 

where (t,t)cJ = - ( I , t ) ) ~ ~ / ( 2 d c J )  follows from the definition of e used here: e = 
(1 - A)'/'. In turn, (I,)cJ follows from the formula (similar to the result (5.36)) 

(6.79) 

This formula is used in the previous expression for the leading-order thermicity 
condition to replace and we note that the factor of rcJ is common to all terms 
and can be divided out. What remains is a formula that allows us to compute dc-, 
hence ACJ, which is written schematically as 

(6.80) 

In the above expression we have used the shock value for (?J& that would appear 
in the integrand, and subsequently the integral indicated is approximated as well 
using the IZ approximation for r ,  from formula (6.41). Carrying out the integral 
approximately yields the following approximation for ICJ : 

(6.81) 

6.8. The form and properties of the evolution equation 
The final step is to insert the formula for ICJ into (6.77) and use the definitions of 
S1 - Sg, to write a wholly contained intrinsic evolution equation for the detonation 
shock surface in terms of bn,bn,Dn,rc and k. The algebra of reconstitution is 
straightforward, but is very lengthy due to the large number of terms that generated 
in the two iterations. However to reveal character of the evolution equation further, 
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and to present a simplified form of it, we simplify many of the coefficients and terms 
that define S1 -S6 by their limiting form for vanishingly small curvature. For example, 
by use of the definition of YcJ in (6.45), we obtain the replacement 

which in turn can be used to simplify the expressions for ncJ, and I ,  and their time 
derivatives, and like terms. Specifically in the case of the terms in (6.77), which limit 
to the steady (D,, Ic)-relation of the older theory, we retain the logarithmic dependence 
on the curvature contained in YcJ with the specific simplification 

(6.83) 

where Cg is a constant that only depends on y and 6 and is defined in Appendix E. 
Using this simplifying limit of small curvature, for fixed D, and derivatives, we find 
that (6.77) with ICJ as given by (6.81) can be reduced to the following simplified 
equation: 

where C1 - C8 are all material constants, defined by their values of y and 6. Again, 
Appendix E gives the set of explicit formulas that show their dependence on the 
parameters y and 6. Note that the parameter dependence on the scaled activation 
energy &dependence is shown explicitly. 

Importantly, this form of the evolution equation contains the most important 
features that we need to point out. In the absence of the derivatives of D,, i.e. 
small b,,, and b,, the steady (D,,K)-relation obtains. In the absence of curvature, 
both gCJ and k are zero, and the evolution equation reduces to a second-order 
nonlinear ordinary differential equation, whose stability theory for the stationary 
solution D, = 1, corresponding to the plane CJ detonation, is found to be asymptotic 
to the exact linear stability of plane detonation. This result provides, of course, an 
important check of the entire procedure, and verifies the means by which we have 
calculated the terms that we have discussed. Nonlinear solutions of the same ODE 
exhibit limit cycles and correspond to pulsating detonation. Finally in the case where 
we keep both curvature and time dependence, one must solve an extremely nonlinear 
scalar wave equation, which has been done numerically in a case that corresponds to 
self-sustained cellular detonation propagation. We give examples of all three special 
cases next. 

6.8.1. The steady (Dn, K)-relation 
When time dependence is absent, the evolution equation (6.84) is simplified as 

(6.85) 

which can simply be shown to reduce to the formulas (6.24) which is exactly the same 
as the steady (D,,~c)-relation with a turning point obtained by the layer matching 
method (Yao & Stewart 1995). 

9 C J  D, - 1 + C 6 7 -  = 0, 



Dynamics of multi-dimensional detonation 261 

6.8.2. One-dimensional dynamics and pulsating detonation 

ordinary differential equation, namely 
When the wave is flat, and IC = k = 0, then (6.84) reduces to a second-order 

Indeed this ODE is a nonlinear equation for the dynamics of a near-CJ plane 
detonation that takes explicitly into account the first effects of low-frequency acoustics. 
This ODE has a stability theory for the CJ detonation D,  = 1 that is asymptotic to 
the exact linear stability theory, as calculated in Lee & Stewart (1990). 

Local linearization of (6.86) at the fixed point (D, ,b , )  = (1,O) leads to a linear 
ODE that corresponds to a linear oscillator with damping. Let x = D, - 1; we 
obtain 

c,eR + (c2e + c3)n + = 0. (6.87) 

It is easy to show that C1 > O,C2 c 0, and C3 > 0, for reasonable values of y 
and 6. Therefore when 8 > IC3/C21, we have an oscillation with negative damping, 
the solution is unbounded as time increases, and the detonation is unstable. When 
8 < IC,/C2l we have an oscillation with positive damping, and the CJ state is stable. 
The stability boundary is given by 

(6.88) 

When y in particular is fixed, then this condition is a relation between 6 and 8, 
or equivalently, between Q and E .  In order to make a comparison with the ex- 
act result computed from linear stability theory, found in Lee & Stewart (1990), 
we note that there, a C-shaped neutral stability boundary for f = 1 (i.e. CJ) is 
plotted in Erpenbeck‘s scaled activation energy, E ,  and scaled heat of combus- 
tion Q. The relation between our parameters and Erpenbeck‘s is simple and is 
given by E = 8/6, Q = y(1 - 6)2/[2(y2 - 1)6], so that we can make a direct 
comparison. 

Figure 3 shows the comparison. ‘Lee & Stewart’ is the label for the exact linear 
stability calculation, and ‘Yao and Stewart’ labels the plot of the condition (6.88) 
calculated with the formula from Appendix E. For both curves to the left of the 
neutral stability curve, for lower values of the activation energy E,(8) ,  and fixed 
Q, the detonation is one-dimensionally stable. To the right of the neutral stability 
curve, for higher values of the activation energy E,(8) ,  and fixed Q, the detonation 
is one-dimensionally unstable. Note that only the bottom branches (for lower values 
of Q) should be considered in the asymptotic comparison, since on the upper branch 
it can be shown that (6.88) corresponds to finite limiting value of 8, as Q and 
E are increased. The bottom of the C-shaped curve is asymptotic to the exact 
result, and 8 -+ GO as E is increased without bound. Interestingly, the formula 
(6.88) qualitatively predicts correctly the entire C-shape, which might have been 
unexpected. 

One can also show easily, directly from (6.86), that for activation energies slightly 
higher than the critical neutrally stable activation energy, a stable limit cycle is 
predicted. Figure 4 shows an example of the numerical solution of (6.86), for the 
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FIGURE 3. Comparison of the asymptotic neutral stability boundary in the ( E ,  Q)-plane, represented 
by (6.88), with the line labelled as ‘Yao & Stewart’ versus the exact linear stability theory labelled 
‘Lee & Stewart’, for y = 1.2. 
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FIGURE 4. Plot of the solution trajectory of (6.86) in the (b,,D,)-phase plane, for 

E = 9 , Q = 5 0 , y =  1.2. 
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FIGURE 5. Plot of the solution of (6.86), D,  versus time (a) from t = 0 to E = 400, for 

E = 9, Q = 50, y = 1.2. (b )  Shown on an expanded scale for t = 450 to t = 550. 

parameters y = 1.2, E = 9, Q = 50, with the initial conditions that at t = 0, D, = 1.01, 
and D, = 0, and displays the result in a D,, D, phase-plane. We note a characteristic 
triangular shape for the limiting orbit, similar to that seen by us in direct simulations. 
Figure 5(a, b) shows the same solution plotted as D, versus time. 
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6.8.3. Self-sustained cellular detonation 

Finally we present some numerical solutions to a version of the evolution equation, 
when the time derivatives of D, are present, and when the curvature is not zero. We 
briefly report on an example solution that corresponds to a self-sustained transverse- 
wave detonation shock instability. The work in this section was done in collaboration 
with Tariq Aslam. A more complete account of the properties of the cellular dynamics 
will be given in a future publication. Here we simply explain the most basic aspects of 
the behaviour we have observed from numerical experiment and from linear analysis. 

First we recall a conjecture that we made at the outset, that such a surface evolution 
equation might show evidence of self-sustained cellular instability. We anticipated that 
such an equation should necessarily be hyperbolic, which would then admit weak 
solutions. The discontinuities of the solution would correspond to slope discontinuities 
on the shock surface, by which each side of the discontinuity on the shock would 
correspond to an independently propagating segment of the detonation, joined by a 
collision point of a shock-shock. 

Indeed it is the case that parameters can be found such that an equation like (6.84) 
is hyperbolic, for certain values of y ,  8 and 6. In fact one looks for regimes where the 
equation is hyperbolic, according to classification by the sign of its highest derivatives, 
b,, and ic, and such that the equation can be further reduced to a hierarchy of hyper- 
bolic operators that can be paired as follows. The lowest operator simply corresponds 
to Huygens' construction, D, = 1 (which is a first-order hyperbolic PDE). The second 
pairing is the terms that corresponds to the largest coefficient of b,, then paired with 
the curvature, IC. The b , , ~  pairing also gives rise to a hyperbolic operator that leads 
to a well-defined transverse wave speed, on the shock. Finally highest-order deriva- 
tive pairing must correspond to a hyperbolic operator in order to have well-posed 
dynamics, which we have always assumed is a requirement of the physical description. 

Transverse instability that leads to cellular behaviour as predicted by the evolution 
equation corresponds to a situation where one has three hyperbolic pairings, D, - 1, 
the D,,K pairing, and the b,,R, mentioned above, and where the wave speed of 
the b , , ~ ,  operator is faster than the signalling speed of the highest-order operator 
of the b,,k - pairing. This restriction on ordering the wave speeds of the various 
characteristic of the evolution equation leads to a restriction on the parameters y ,  6 
and 6' such that cells are predicted. 

Interestingly, the restriction that the equation be strictly hyperbolic means that 
the corresponding one-dimensional instability is stable; hence the corresponding one- 
dimensional pulsation is at least weakly damped, while the transverse instability is 
active. The linear stability analysis of the plane CJ detonation, as predicted from our 
evolution equation, for cases that correspond to transverse wave instability, have a 
linear stability properties that correspond to a band of stable wavenumbers below a 
critical value, and bounded but unstable wavenumbers above a critical value. 

The numerical solution of (6.84) carried out by Aslam in collaboration with us, for 
the example shown below, first represents the shock location as a function, ys(x, t), say, 
where x is the direction measuring distance along the channel and y is the distance 
across the channel width. The surface equation is further decomposed into a system of 
three first-order PDEs with D,, b, and y, as the dependent variables. Advective spatial 
derivatives that appear are treated using second-order EN0  upwinding. Curvature 
terms are treated with second-order spatial differences. And the time integration is 
carried out using a third-order Runge-Kutta method. 

Figure 6 shows such an example for a solution of (6.84), where it has been further 
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simplified by neglecting the nonlinear products of (D, - l)b,, and (Obn)2, while the 
nonlinearity of ~ ? C J  was retained. The figure shows a grey-scale plot of the value of 
D, that is attained at each fixed point in a computational domain. The jumps in the 
grey-scale correspond to a jump in the value of D,. Superimposed on top of the grey 
scale are contours of the shock location at various equal time increments, in order 
to show the development of the instability and to give a relative sense of the motion 
of the disjoint shock segments. The parameters for the run are y = 1.2, Q = 1.85 
and E = 5. The width of the channel is approximately 25 dimensionless units and 
it is 100 units long, for each segment. Two channel segments are shown, with the 
lower one the continuation of the upper one. At time t = 0, the shock is assumed to 
have D, = 0, with a set of extremely small-amplitude initial shock displacements as 
disturbances with a distribution of frequencies excited. 

The shock initially 
propagates as a flat wave, and then subsequently transverse instabilities appear. This 
can be seen dramatically as a pattern begins to appear in the grey-scale record at 
approximately 25-30 units downstream from the left end. At that point, cells can 
be observed that correspond to nearly linear small-amplitude disturbances. The cells 
are diamond shaped, but with nominally straight edges. As the wave continues 
to propagate, the cells merge, and the instability can be seen to strengthen. The 
consequences of the nonlinear shock dynamics begin to give the cell boundaries a 
diamond-spade shaped. Indeed, merging and coalescence of the cells continues as the 
shock complex propagates downstream. To further interpret the nonlinear behaviour, 
figure 6(a), shows a plot on the centreline of the channel of figure 5, showing the 
value of D, versus position in the channel. Figure 6(b), shows a similar cross-section 
at about 50 units downstream. 

Some striking features of this simulation are as follows. 

This work has been supported by the United States Air Force (USAF), Wright 
Laboratory, Armament Directorate, Eglin Air Force Base, F08630-92- K0057, and 
F08630-95- 10004. Additional student support was made available through the USAF 
Office of Scientific Research, AASERT grant F49620-93-1-0532. The discussions 
with John Buckmaster regarding his earlier work based on matched asymptotics 
(Buckmaster 1988), and the similarity with ours in 96, led to an improved presentation 
and are warmly acknowledged. 

Appendix A. Betrand-intrinsic coordinates 
The shock surface can be represented quite generally in terms of laboratory-fixed 

coordinates (x, y )  as y(x,  y ,  t) = 0. This equation constrains the lab-coordinate position 
vectors in the surface to x = x,. The normal to the surface is chosen to be positive 
in the direction of the unreacted explosive and can be calculated by the formula 
2 = Vw/lVyl. The shock surface can be represented by a surface parameterization 
x = x s ( t , t ) ,  where 5 measures length along the coordinate lines of the surface. The 
unit vector in the shock surface, tangent to it, is defined by ? = ax,/a<. The total 
curvature of the surface is given by V D = ~ ( 5 ,  t). For the present purpose, it is 
sufficient to assume that a straight line intersects the shock surface, and that the 
intersection point defines the instantaneous origin for the intrinsic coordinate system. 

The intrinsic coordinates are related to the laboratory coordinates by the change 
of variable given by 

(A 1) x = x,(<,t) + ni i ( t , t ) .  
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FIGURE 6. (a) Solution of simplified (6.84) shown as a grey-scale contour plot of D,, for E = 5, 
Q = 1.85, y = 1.2. The simulated foil is shown in two piece and each is 25 wide and 100 units long. 
The foil records the value of D, as the shock passes by a fixed point. Lighter shades correspond 
to low values of D,, darker shades correspond to higher values, and D, ranges from approximately 
0.9 to 1.3. Line contours show instantaneous shock positions at equal increments in time. (b)  
Longitudinal centre slice across the foils shown in (a) that shows plots D,  versus position along the 
centre line. (b) Horizontal slice across the foils shown in (a) at approximately 75 units that shows 
plots D, versus vertical position along the cut. 
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The Frenet formulas in two-dimensions are 

A aii A 

- --Kn, - = ICt. 
a? 
a< a<  
_ -  
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and reflect the fact the intrinsic coordinate system is locally orthogonal. 
Notice that in two-dimensions, one can define the angle 4 between a straight 

reference line and the normal B. The derivative of the angle 4 with respect to the 
arclength 5 defines the curvature IC = a+/a<. Then normal and tangent unit vectors 
are related to the Cartesian basis by ii = sin(4)2, + cos(q5)2,, 2 = cos(4)2, - sin(+)2,. 
It is a straightforward matter to relate arclength, angle coordinates to laboratory 
coordinates. 

The equations of motion are transformed from a representation in (x,y,t)- 
coordinates to (n, <, t)-coordinates according to coordinate transformation (A 1). The 
calculations required are straightforward but lengthy. Here we give the essential results 
needed. More details can be found in Lee, (1992), Stewart (1993) and Yao (1995). 
In what follows, with regard to fixed quantities in partial differentiation, x refers to 
(x ,y ) ,  and [ refers to (t,n). 

The V operator is given by 

By using the definition of the velocity in the intrinsic coordinates u = u$ + u,i, we 
calculate the divergence V u, and u - V as 

The time derivative in the lab-fixed coordinates is related to that in the shock- 
attached coordinates by (a/&), = (a/&), + (anlat), (a/&) + (a</&), (d/at), where 
(an/at), = -D, is the negative of the normal component of the shock surface velocity 
and (a</&), = B ,  when evaluated at n = 0, is the instantaneous rate of increase or 
decrease of arclength along the shock. Thus we write 

Next we derive the kinematic relations which gives a differential condition on B,  in 
particular, which we later use to estimate the asymptotic order of certain terms in 
the transformed equations, for small curvature. Differentiating the change of variable 
formula (A 1) with respect to t, holding x fixed (and using the chain rule and Frenet 
formulas) gives, 

Next we differentiate (A 6) with respect to 5 ,  holding n and t fixed, and use the Frenet 
formulas to obtain a vector equation, whose A- and ?-components are 

aD, 1 
, a t  l+nlc '  
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Equation (A7) can be further simplified. By differentiating (A7) by <, and by using 
the result that a/at[h-(a?/at)t] = -arc/at, one obtains an expression for &/at. Then 
using that formula in (A 8), one obtains the simple expression 

In particular, (A9) can be used to estimate the size of B = ( d g / a t ) , .  
When specialized to the surface n = 0, the kinematic relations (A7) and (A9) 

describe the evolution of the surface itself and reduce to the kinematic surface relations 

Appendix B. Reduced governing equations 
The governing equations in Bertrand-intrinsic coordinates follow from a straight- 

forward application of the formulas of Appendix A. If we define U,, = u, - D,, the 
governing equations are written as 

where 
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Notice that in equation (B2), that i>, = (aD,/dt), + BaD,/a( appears explicitly, 
which is the intrinsic time derivative of D, along the shock normal. 

In addition, it is necessary to write down two independent energy equations, that 
can be used to replace the n-momentum and energy equations respectively; these are 
essentially a streamwise Bernoulli's equation and what has been called the muster 
equation, Bdzil (1981). Bernoulli's equation is given by 

The master equation is written as 

where R = - [ypRl- uR2 + ( y  - 1)(& + qR5)]. 
Next we find the form of the reduced equations that for our needs must be valid 

in the asymptotic sense in a region near the shock n < 0 with n - O(1), as the shock 
curvature K --+ 0. Specifically we consider the size of the terms that comprise R1-R5. 

We assume that the dimensionless shock curvature is small. Let the order of 
magnitude of the curvature be measured by e2, where 0 < E B ~ .  We also assume that 
the transverse spatial variation of the structure of the flow field behind the shock is 
weak, and is characterized by the scaled transverse variable 

Therefore in the governing equations we assume that a / a g  = d / a [  = O(E) .  
It follows from (A9), and from the estimates D, - O(1), K - O(e2), that one 

obtains an estimate for B = (a{/&), - O(e). If one first supposes that ut - O(e)  and 
ap/ag - o(e), then R3 is o(6). Equation (B3), with R3 = 0, is the O ( E )  equation for 
uy, which can be integrated on its characteristic. Combined with the shock boundary 
condition that uc = 0 at n = 0, one find that uc = 0 to O(e). Thus we are led to the 
finer estimate that ut - o(e). 

The terms RI-Rs are o(e2) = o(K),  if one makes the modest assumption that 

which can be guaranteed, given the previous assumption on the explicit scaling for 
5, for any expansion of the reaction-zone structure where the 0(1) terms are not 
functions of 4, and hence functions of at most n and t. 

Note that no assumptions have been made so far regarding the asymptotic nature 
of the time variation, and its relation to the order of IC. However, if we further assume 
that we have slow-time variation in the shock-attached frame, and make only the 
assumption that ( d / a [ ) ,  - o(l), then the intrinsic derivative b, is approximated as 
(dDn/at)z + o ( ~ ) .  
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Appendix C. Limiting form of the steady (Dn, rc)-relation 

limit as v + 1. Let 
Here we consider only the integral asymptotics of the result stated in $4, in the 

i C J  = 1 - ( Z * K ) I / V ,  (C 1) 

(C 2) 
and D ,  be given by 

D n -  - 1 - ~ ( Z * X ) " ~  2 - 1~7~1, 
where 

where f' = (1 - 1)1/2. Note that in order to properly calculate the contribution to the 
integral I ,  when v + 1, one splits the integral from 0 to 1 into a contribution from 0 
to 1 and 1 to AcJ. Hence for v < 1 one finds the second integral, and combines the 
result to obtain in the formula for D,: 

D , , = ~ - K -  di+- 2( 1 - v )  (z*rc)l/v + o(K'/v). (C 4) 
V 

(Y + 
For the case that v = 1 we can also get a formula with a logarithmic contribution 

that is identical the result in Stewart & Bdzil (1988), Klein & Stewart (1993). To 
demonstrate this, without loss of generality we take the rate multiplier to be equal to 
1 and let c2(t') = y( 1 + t ) ( y  - d)/(y + 1)2, and write the above result as 

D, = 1-rc- (1 + /)2( 1 - A)-'(e'/'* - es/cz(o))dA 
(Y + y2 I' 

1 --d KZ* ( (1+ / )2 - l ) ( l -A) -vdA-~  [*- 
2 2 1 - v  1-v 

Now we evaluate the last two terms: the term 

1 2 
4 - 2 ~  3-2~' 

1 ;i ((1+/)2-1)(1-i)-vdA= -+- 

with v = 1, is equal to 5/2. 
We also rewrite 

which can be evaluated with L'Hospital's rule as v --+ 1, and which generates a 
logarithm. 

Finally we obtain 

1' (1 + f')2(1 - 1)-v(e-e/c2 - e-'/'*('))dl + $z'rcln(z'rc). 

(C 8) 
1 
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Appendix D. The integrals with the simplest rate law (zero activation 
energy) 

First we calculate the integrals for D = 1 and r = (1 - A)" : 

(L 2 
y + l  1 - v + - ) ,  

I1 = - 

I 3  = ~ 1 (- 2Y - -) 1 
( y + 1 ) 2  3-2v 2-v ' 

2 
14 = - 

3 - 2 ~ '  
Note that integral J does not contribute to G(D) when D = 1, because TCJ = 0. 

integrals, with t = (1 - jZ/D2)ll2 : 
For the case that D is 1 to calculate those integrals we first define some simpler 

~I 

For I = (I - A)" = (1 - D2 + /2D2)v, we have 

(D 7) 

(D 8) 

1 
1 - v  

K1 = -(1 - (1 - D2)'-"), 

2 
3 0  

K2 = -( 1 - D2)3'2-vf'F[3/2, V, 5/2, D2/(D2 - l)], 

1 
K3 = - 

0 2  

1 - (1 - D2)2-" 1 - (1 - D2)'-" 
- (1 - D2) ( 2-v 1 - v  

where F(a,  b, c, z) is the hypergeometic function defined by the series 

O0 r ( a  + n)r(b + n) zn F(a, ~ , c , z )  = r(C) c - 
r ( a ) r ( b )  n=O r ( C + n )  n!' 

Thus we obtain 
1 

11 = -(K1 + K2), 
Y + l  
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I4 = K2 

1 

Y + l  
J = -(KO - yK1). 

Appendix E. A list of integrals and relations 

evolution equation in $6. 
Here we list several basic relations and integrals which are needed for deriving the 

The definition of the constants C1 - C, 
In this section we define the constants referred to in the main text. One only needs 
to specify values for y and 6 and then follow the nested definitions to obtain the 
constants defined below. 

First we define the following: 

y-1+26 
y + l  ' 

v, = 

1 

V S  
Ps = - Y  

y-11226 
y + l  ' 

us = - 
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9 (E 12) 
2 + S(1-  l / y )  

Y + l  
Ps = 

(E 13a-d) Y + l  2 

+ 

7 cs = Y P S V S ,  
Y + J  Y + 6  

U l J  = -- y + 1 ’  p > J = m ,  P > J = -  

1 - 6  
a= [3y-y2-S(3y-1)], p= ~ ‘)[2~-6(y-l)][y-1+26)~], (E 14a,b) 

- 

2(Y + ( Y  + 

= (y - 1 + 2S)2(3 + S) [ [Y - 3 + S(Y + 3 1  + (y + - 

(E.16) 

(E 17a, b) 

(E 18a,b) 

(E.19) 

(E.20) 

(E.21) 

(E.22) 

(E.23) 

(E.25) 

then 

(23 = - 1 [ ( y + 6 ) 2 + y ( y + 6 ) ( 1 + U s ) + ( y 2 - 1 ) ( 1 + U s + ~ ~ ) ~ ~ + ~  (E.27) 
1 - S 2  a 1 - 6 2 ’  
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04  

T3, 
L S  

c4 = -p 
(1  - 62)a 

- c," [3(y + 6) - 76 - 11 
- 8 5 2  ( y  + 1)(1+6) ' 

(E.28) 

(E.29) 

(E.30) 

(E.31) 

The limiting form of the evolution equation can be then expressed as 
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